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COMMENT 

Self-avoiding walks on Sierpinski carpets 

Yoshi-hiro Taguchi 
Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 
1S2, Japan 

Received 18 September 1987, in final form 12 January 1988 

Abstract. We calculate the fractal dimensions of self-avoiding walks ( S A W )  on Sierpinski 
carpets with the bond-moving-type renormalisation. The results suggest that carpets with 
the same fractal dimension of the random walk have almost the same fractal dimension 
of SAW within the approximation. 

The self-avoiding walk (SAW) model represents a random walk that must not contain 
self-intersections. SAW has an averaged square distance ( r2( t ) )  as a function of time t :  

( r Z ( f ) ) -  t2'&A" (1) 

d s A W  = f (2+ d )  (2) 

where dSAW is the fractal dimension of SAW. Flory (1953) has predicted 

where d is the dimension of the lattice. His prediction has agreed with several numerical 
calculations (Caracciolo and Sokal 1987). Now, what is the functional form of d,,, 
for fractal lattices? The best proposal is that of Dekeyser er al (1987): 

where d ,  is the fractal dimension of the random walk (RW) and df is the fractal 
dimension of the fractal lattice. Equation (3) is applicable to the exact results: RW 

(Hilfer and Blumen 1984) and SAW (ElezoviC et a1 1987)t on the Sierpinski gaskets. 
The Sierpinski gaskets, however, are finitely ramified fractals. Their physical properties 
(for example, critical phenomena) depend upon whether the ramification (Mandelbrot 
1982) of a lattice is infinite or not. Is equation (3) suitable for infinitely ramified 
fractals? In particular, equation (3) requires that the carpets with the same fractal 
dimension of SAW have the same fractal dimension of RW. To confirm this equality, 
we calculate dsAW of Sierpinski carpets-one of infinitely ramified fractals-with the 
bond-moving-type renormalisation group method. 

We construct Sierpinski carpets (Gefen et a1 1984) in the following way: consider 
a square of unit area and subdivide it into b2 subsquares, out of which 1' subsquares 
are cut. At first, we consider only the behaviour of the central cutout and b is restricted 
to an odd number. The iteration of the renormalisation group transformation generates 
two basic exchange variables: the fugacities P and P,. P is associated with a step 

t It was pointed out by the referee that Dhar (1978) treated this problem first. 
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along the bond between two non-eliminated subsquares. P, corresponds to a step 
along the bond which borders an eliminated subsquare. Following the study of da Silva 
and Droz (1987),  we generate renormalised fugacities P' and P: .  Fig:re 1 shows how 
to construct recursion relation:. We define renormalised fugacities P on every bond. 
These renormalised fugacities P contain walks from a column to a neighbouring column 
through the bond. These walks consist of n ( n  s ( b  - 1 ) / 2 )  sequential vertical steps 
and a horizontal step. Owing to the anisotropy of the carpets, these walks, however, 
are of two different types. Hence we define P as a product of two types and take the 
geometric mean after bond-moving renormalisation. (One *example is shown in figure 
1 and its explanation is in figure 2 .  For the example shown, P = ( P  + 2 P 2  + 2P3 + 2 P 4 )  x 
( P  + 2 PP, + PP; + P 2  P ,  + P 2 P z  + P 3  P,).)  We can remark that, for the renormalisation 
invariance, when the bond neighbours the boundary of a b x b cell, the vertical steps 
on the boundary bonds are ignored (the boundary bonds in figure 1, therefore, !re 
not illustrated). Hence, for the bond marked by + in figure 1, P =  
P (  P + 2 P 2  + 2 P 3  + 2 P'). Next, using bond-moving reno!malisation, we construct F, 
( i  = 1 ,  . . . , b ) ;  F, represents column to column fygacity. P values on the bond marked 
by an open circle are renormalised in F,, and P on the bond marked by a full circle 
are renormalised in F,, pa and pwt are defined as a root of one bth of summation of 

A 

( u J  ( 6 )  

Figure 1. The carpet-type cells with b = 7, I = 3. Figure 1 shows the b times enlarged part 
surrounded P y  a bold rectangle. Full lines represent P bonds and broken lines represent 
P,, bonds. P on the bonds marked by an open circle are renormalised in P'. P: includes 
those through the bonds marked-by a full circle. ( a )  Directions of bond moving. The 
arrows show the directions. ( b )  P, between A and B (above) and P,, between C and D 
(below), which are produced after bond moving. (c )  The example of two types of walks 
through a bond. The explanation of these symbols is given in figure 2. 
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Figure 2. The explanation of the symbols in figure l ( c ) .  This means n ( n G ( b - l ) / 2 )  
sequential vertical steps and a horizontal step; Multiplying one of the two symbols by 
another, we obtain the renormalised fugacity P. 

9 over moved bonds. For example, in figure 1, 

etc. The power of represents the geometric mean mentioned above. Finally, P’ (Pk) 
are obtained by multiplying F3 (Fwl): 

b 

P’= F, 
i= 1 

and 
b 

Pi= fl F,,,. 
r = l  

Thus we have obtained the recursion relations: ( P ,  P,) + ( P ’ ,  Pi). 
With these recursion relations, we draw flow diagrams (see figure 3). For b = I + 2 ,  

the flow diagrams on the ( P ,  P,) plane have seven fixed points. The first four fixed 
points are trivial ones, A: (O,O), B: (0, a), C: (00, CO),  D: (E, 0). To find the non-trivial 
fixed points, we next discuss flows along special axes. Starting at a point (0, P,) on 
the P, axis ( P  = 0), the flow stays on this axis. On this axis, the flows near A go toward 
A and those near B go toward B. Hence, there is an additional fixed point on the 
P=O line, unstable in the direction of this axis. We denote this point by E. In the 
same manner, we examine the flow on the P,, = 0 line and find one more unstable fixed 
point, called G. For both fixed points, E and G, there exists a flow going out of the 
inside of the (P, P,) plane into the fixed points. Consequently, there must be a final 
fixed point inside the plane. This fixed point, F, is unstable in all directions and 
provides the value of dsAW later. For b > I + 2 ,  the flow diagrams do not include the 
fixed point D and do not have the fixed point G on the P,=O line but inside the 
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Figure 3. The flow diagrams on the ( P ,  P,)  plane. ( a )  b = 1+2, ( b )  b > 1+2. They have 
seven (for ( a ) )  or six (for ( b ) )  fixed points. The fixed point F gives dSAW. 

(P,  P,) plane. Table 1 gives the numerical results for various b and 1 values. Last we 
calculate values of dsAW from the recursion relation of the fugacities, according to 
Given and Mandelbrot (1983); they have calculated d, from the recursion relation of 
the hopping probability. For this purpose, we define times T and T,  which are step 
times on P and P, bonds, respectively. If we expand the renormalised fugacity P' 
and PL, the coefficient of the term P m P i  approximately yields the number of walks 
of this type consisting of m steps along the P bond and n steps along the P, bond. 
Thus defining Q =  T P a / a P t  T,P,a/aP,, we have T ' = ( l / P ' ) Q P '  and TL= 
( l /PL)QP,,  where the primed 'times' are renormalised step times. These provide the 
recursion relation for T /  T,  : 

T' - ( T aP' P, aP')(  T P ap:, ap;)- '  +- -- --+-- --- 
T:, T,., aP P' aP, T,  P:, aP aP, 

where the fugacities and the differentiations take values at the fixed point F. The fixed 
point of (6) is given as 

x- - [ ap' ap:,+ [ (ap '  ~ P L ) '  +4- ap' - a ~ : , ] " ~ } (  2--  P B P L ) - I  . (7) 
T, aP aP, aP aP, ap, a p  P:, aP 

From equation ( l ) ,  dsAW takes the form 

In( TI/ T )  
In b dSAW = 

Table 1. The numerical results for the carpets with central cutout. The values of dsAW 
monotonically decrease with decreasing d , .  

5 1 1.975 0.335 23 1.3611 1.256 
9 3 1.946 0.279 085 1.6206 1.241 
7 3 1.896 0.212 21 1.5381 1.228 
3 1 1.892 0.195 3 1.236 1.207 

7 5 1.633 0.013 056 1.7027 1.140 
9 7 1.577 0.004 882 1.8349 1.137 

5 3 1.723 0.043 63 1.5245 1.151 
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or 

where 

T‘ aP’ T P dP’ - - -+2w- 
T - a P  T P ~ ~ P ,  

and 

Tk T P aPk aPk - +-. 
T, T,  Pk aP aP, 

In (sa) and (96) T I T ,  is given in (7).  Table 1 shows the numerical results of d S A W ,  
which monotonically decrease with decreasing d f .  This tendency qualitatively agrees 
with the following equation: 

ds,, = $( 2 + d,).  (10) 

We can obtain (10) by setting d ,  = 2 in (3) because of the small deviation of d ,  from 
2 on the Sierpinski carpet (refer to the equation in the caption of table 2).  Hence our 
approximation can show the dependence of dsAW upon d f .  Our results, however, are 
not accurate enough to check (3) directly. In fact, substituting our results into (3) ,  we 
get values of d ,  less than 2: impossible values! 

Next we consider SAW on various carpets. The bond-moving renormalisation tells 
us that the value of d ,  does not depend upon the shapes: the behaviour of the cutout 
of 1’ eliminated subsquares (Taguchi 1988). Equation (3) also tells us that, if two 
carpets have the same value of d, ,  d,,, of these carpets are equal. It is interesting 
to confirm this equality directly. Fortunately, the carpets can take different shapes 
without varying the value of b and 1, i.e. d, .  Figure 4 shows some examples of carpets 
which have the same values of d ,  but have different shapes. Table 2 shows the 
numerical results for these carpets. The carpets of different shapes seem to have 
different values of d S A W ,  even if they have the same value of d,.  To estimate the 
degree of error, we calculate d,,, of the two-dimensional ordinary lattice. To this 
end, we set 1 = 0 in our formula. Then we get the recursion relation 

P’=P(P+2P2+. . .+2P(b+1)’2 I - *  (11) 

Because Q = TPa/aP, T’/ T = aP’/aP. Substituting the fixed-point values into ( loa) ,  
we obtain the values of dsAW (see table 3). Table 3 shows that the degree of error is 
about a few per cent. On the other hand, dsAW of the carpet with the same d ,  fluctuates 
over less than a few per cent. Hence we cannot distinguish between the error and the 
effect of different shapes. However, the carpets with the same d ,  turn out to have 
almost the same d,,, within this approximation. 

To conclude, we propose a new renormalisation method for the self-avoiding walk. 
This provides the value of the fractal dimension of self-avoiding walks, dSAW. The 
degree of error of dsAW is less than a few per cent for SAW on the ordinary d = 2 lattice. 
Applying this method to SAW on Sierpinski carpets, we obtain dsAW of the carpets of 
several fractal dimensions, d f .  We also examine which carpets have the same d S A W .  
It turns out that the carpets of same d ,  have almost the same d,,,. 
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I C 1  le1 

l h )  

Figure 4. Some examples of the set of carpets with the same value of d ,  (see table 2) .  
The groups ( a )  and ( b ) ,  ( c ) - ( e )  and (f)-(i) have the same value of d, .  
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Table 2. Numerical results for the carpets with the same d ,  and different shapes (see figure 
3). d, is calculated with the bond-moving renormalisation (Taguchi 1988), d, = 
In({[(b - l ) / b ] + [ l / (  b - / ) ] } ( b 2 -  /'))/In b. 

F 

Figure 4 d ,  P* d S A U  d ,  
_ _ _ ~ ~ ~ ~  ~ 

( a )  1.896 0.212 21 1.5381 1.228 2.039 
( b )  0.128 235 1.1931 1.23 1 
(C) 1.946 0.279 085 1.6206 1.241 2.017 
( d )  0.197 905 1.3766 1.235 
( e )  0.218 94 1.3342 1.229 
( f )  1.853 0.102 466 1.5628 1.210 2.063 
(g)  0.129 84 1.4554 1.230 
( h )  0.061 065 1.3120 1.199 
( i )  0.075 867 1.2586 1.215 

Table 3. Numerical results of d = 2 ordinary lattices. Setting l = 0 in our formula, we get 
the recursion relation for these lattices. b represents the length of a cell side. The results 
show that our method has error of a few per cent. 

3 0.5 4 1.262 5.3 
5 0.440 62 7.922 1.286 3.5 
7 0.423 86 12.147 1.283 3.8 
9 0.417 98 16.414 1.273 4.5 

11 0.415 73 20.632 1.262 5.3 
~~ 

4 
3 Reliable 0.37911 - - 

t From numerical results (Caracciolo and Sokal 1987). 

I wish to thank the referee for useful comments on the manuscript. 
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